已知一个圆锥的轴截面△ABC是等边三角形,它的表面积75πcm2,求这个圆锥的底面半径和母线的长.

问题描述:

已知一个圆锥的轴截面△ABC是等边三角形,它的表面积75πcm2,求这个圆锥的底面半径和母线的长.

设这个圆锥的底面半径为rcm,则母线的长为2rcm,
利用表面积为75π的扇形,∵圆锥的母线即为扇形半径,圆锥底面圆的周长等于扇形弧长,
∴扇形面积+底面圆的面积=圆锥表面积.

1
2
×2πr×2r+πr2=75π,
解得:r=5,
∴2r=10.
故这个圆锥的底面半径为5cm,母线的长为10cm.