复数1+i+2i^2+3i^3+……+100i^100
问题描述:
复数1+i+2i^2+3i^3+……+100i^100
答
原题
=1+(0+1i-2-3i)+(4+5i-6-7i)+(8+9i-10-11i)+.+(96+97i-98-99i)+100
=101-2(1+i)*25
=101-50-50i
=51-50i
规律是(n为整数):
i^(4n)=1
i^(4n+1)=i
i^(4n+2)=-1
i^(4n+3)=-i