设偶函数f(x)的定义域为R,当x∈[0,+∞)时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是_.
问题描述:
设偶函数f(x)的定义域为R,当x∈[0,+∞)时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是______.
答
由偶函数与单调性的关系知,若x∈[0,+∞)时f(x)是增函数则x∈(-∞,0)时f(x)是减函数,
故其图象的几何特征是自变量的绝对值越小,则其函数值越小,
∵|-2|<|-3|<π
∴f(π)>f(-3)>f(-2)
故答数为f(π)>f(-3)>f(-2)