是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q的值,否则请说明理由.

问题描述:

是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q的值,否则请说明理由.

假设存在,则说明x4+px2+q能被x2+2x+5整除,可设另一个因式是x2+mx+n,∴(x2+2x+5)(x2+mx+n)=x4+px2+q,即有x4+(m+2)x3+(n+2m+5)x2+(2n+5m)x+5n=x4+px2+q,∴m+2=0n+2m+5=p且2n+5m=05n=q解上面的方程...