如图,梯形ABCD中,AD∥BC,两腰BA与CD的延长线相交于P,PF⊥BC,AD=2,BC=5,EF=3,则PF=_.
问题描述:
如图,梯形ABCD中,AD∥BC,两腰BA与CD的延长线相交于P,PF⊥BC,AD=2,BC=5,EF=3,则PF=______.
答
在梯形ABCD中,∵AD∥BC,
∴△PAD∽△PBC,AD=2,BC=5,
∴它们的相似比是2:5,
又∵△PAE∽△PBF,
=PA PB
=PE PF
,PE=PF-3,2 5
∴
=PF−3 PF
,解得,PF=5.2 5