泊松分布的λ和e是什么意思?公式是怎么来的?
泊松分布的λ和e是什么意思?公式是怎么来的?
率论中常用的一种离散型概率分布.若随机变量nbsp;Xnbsp;只取非负整数值,取k值的概率为λke-l/k!(记作Pnbsp;(k;λ),其中k可以等于0,1,2,则随机变量Xnbsp;的分布称为泊松分布,记作P(λ).这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的.泊松分布Pnbsp;(λ)中只有一个参数λnbsp;,它既是泊松分布的均值,也是泊松分布的方差.在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率nbsp;λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布.因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位.nbsp;nbsp;nbsp;泊松分布(Poissonnbsp;distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discretenbsp;probabilitynbsp;distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denisnbsp;Poisson)在1838年时发表.nbsp;泊松分布的概率密度函数为:nbsp;P(X=k)=frac{e^{-lambda}lambda^k}{k!}nbsp;泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率.nbsp;泊松分布适合于描述单位时间内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等.nbsp;nbsp;(Poissonnbsp;distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discretenbsp;probabilitynbsp;distribution),由法国数学家(Siméon-Denisnbsp;Poisson)在1838年时发表.nbsp;nbsp;泊松分布的概率密度函数为:nbsp;nbsp;:P(X=k)=frac{e^{-lambda}lambda^k}{k!}nbsp;nbsp;泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率.nbsp;nbsp;泊松分布适合于描述单位时间内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等.nbsp;nbsp;观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:nbsp;nbsp;nbsp;P(x)=(mx/x!)e-mnbsp;nbsp;称为泊松分布.例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体.实际上每个基因组二体的分布是服从泊松分布的,将取如下形式:nbsp;nbsp;P(0)=e-3=0.05;nbsp;nbsp;P(1)=(3/1!)e-3=0.15;nbsp;nbsp;P(2)=(32/2!)e-3=0.22;nbsp;nbsp;P(3)=0.22;nbsp;nbsp;P(4)=0.17;……nbsp;nbsp;P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的.由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率.