任意三角形的内切圆半径

问题描述:

任意三角形的内切圆半径
任意的 不管是直角还是不是直角

求内切圆半径:
思路:三角形内切圆的圆心到三条边的距离相等:S=1/2a*r+1/2b*r+1/2c*r=1/2r(a+b+c) =>r=2S/(a+b+c)=absinC/(a+b+c)
这里r是内切圆的半径,a,b,c分别是三条边.S是三角形的面积.sinC为正弦值.