1/1*2*3+1/2*3*4+...+1/(48*49*50)

问题描述:

1/1*2*3+1/2*3*4+...+1/(48*49*50)

1/(1*2*3 ) +1/(2*3*4 ) + ...+ 1/(48*49*50)
=1/2[1/(1*2)-1/(2*3)]+1/2[1/(2*3)-1/(3*4)] + ...+ 1/2[1/(48*49)-1/(49*50)]
=1/2[1/(1*2)-1/(49*50)]
=306/1225