已知x,y,z为实数,且x+y+z=5,xy+yz+zx=3,则z的取值范围为 _.
问题描述:
已知x,y,z为实数,且x+y+z=5,xy+yz+zx=3,则z的取值范围为 ______.
答
由x+y+z=5得y=5-x-z代入xy+yz+zx=3得
x(5-x-z)+(5-x-z)z+zx=3
整理得
x2+(z-5)x+(z2-5z+3)=0
因为x是实数,那么关于x的一元二次方程的判别式是(z-5)2-4(z2-5z+3)≥0
解这个一元二次不等式,
得-1≤z≤
.13 3