数列{an}的前n项和f(n)是n的二次函数,且f(2+n)=f(2-n),f(4)=0,f(1)=-3,求数列{an}的通项公式an
问题描述:
数列{an}的前n项和f(n)是n的二次函数,且f(2+n)=f(2-n),f(4)=0,f(1)=-3,求数列{an}的通项公式an
加问:设bn=(an+1)/(an+2),求数列{bn}的最大项和最小项
答
首先2是f(n)对称轴,f(4)=f(0),若f(n)=ax方+bx+c则c=0f(1)=-3说明a+b=-3,f(3)=f(1)=3则9a+3b=-3,可知f(n)=x方-4x,知an=f(n)-f(n-1),代入f(n)解析式可知an=2n-5故bn=1-1/2n-3,b1最大为2,b2最小为0.祝楼主学习愉快....