平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=120°,∠BAA1=∠DAA1=60°,则AC1的长为__________.
问题描述:
平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=120°,∠BAA1=∠DAA1=60°,则AC1的长为__________.
根号21
答
用向量法
向量AC1=AB+BC+CC1=AB+AD+AA1
向量AC1^2=(AB+AD+AA1)^2
=AB^2+AD^2+AA^2+2AB*AD*cos120°+2AB*AA1*cos60°+2AD*AA1*cos60°
=1+4+9-2+3+6=21
|AC1|=√21