请证明简谐运动的周期或频率与振幅无关.

问题描述:

请证明简谐运动的周期或频率与振幅无关.

证明的方法:
1)实验法
通过实验,可以看出对于简谐运动来说,周期T和振幅A大小无关.
2)理论法:
根据牛顿第二定律,有:
F=-kx=ma=m*d^2x/dt^2
积分可得:x=A*cos(ωt+φ)
其中,ω=2π/T=根号下(k/m)
这样,解出,T=2π根号下(m/k)
m表示振子的质量,k表示比例系数(对于弹簧振子来说,就是劲度系数)
显然,T大小和振幅A大小无关