已知cos2x=√ 2/3,则sin^4X+cos^4的值为?(我做的答案是-根号2/3,可没这选项)

问题描述:

已知cos2x=√ 2/3,则sin^4X+cos^4的值为?(我做的答案是-根号2/3,可没这选项)
A13/18
B11/18
C7/9
D-1
sin^4X+cos^4x

sin^4X+cos^4x
=(cos^2x+sin^2x)^2-1/2(2sinxcosx)^2
=1-1/2sin^2(2x)
=1-1/2[1-cos^2(2x)]
=1-1/2*[1-(√ 2/3)^2]
=1-1/2(1-2/9)
=1-1/2*7/9
=1-7/18
=11/18
选B