1*1-2*2+3*3-4*4+……+99*99-100*100+101*101=
问题描述:
1*1-2*2+3*3-4*4+……+99*99-100*100+101*101=
答
1×1-2×2+3×3-4×4+...+99×99-100×100+101×101=-[(2×2-1×1)+(4×4-3×3)+...+(100×100-99×99)-101×101]=-[(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+...+(100+99)(100-99)-101×101]=-(1+2+3+4+5+6+...+99+100-10...