lim(x→∏) tan5x/sin3x = lim(x→∏) 5x•tan5x/5x / 3x •sin3x/3x = 5/3

问题描述:

lim(x→∏) tan5x/sin3x = lim(x→∏) 5x•tan5x/5x / 3x •sin3x/3x = 5/3
请问我这么做可以不?个人认为是0/0 的形式 不用洛必达法则 而采用 lim(x→0) sinx/x =1 这个形式来做 应该是可以的
-5/3 为什么呢?

你一开始的做法是错误的!因为现在x的趋向是x→π,而非x→0 !你使用重要极限的时候光考虑函数的形式了,忽视了自变量的变化!方法一:洛必达法则 lim(x→π) tan(5x)/sin(3x) =lim(x→π) [5×(sec5x)^2] / [3×cos(3x...