求极限习题做法1.lim e^(sin3x) - 1x->0 ------------------- = In(1+2x)sin3x=3x,In(1+2x)=2xe^3x -1lim ------------- x->0 2x2.当x-〉0时1/(e^x)有没有极限?1.lim [e^(sin3x)-1]/[In(1+2x)]x->0感谢土桥居士的回答,基础教程上第一题的答案是3/2第二题是选择题答案是极限不存在。第一题有别的解释么?

问题描述:

求极限习题做法
1.lim e^(sin3x) - 1
x->0 ------------------- =
In(1+2x)
sin3x=3x,In(1+2x)=2x
e^3x -1
lim -------------
x->0 2x
2.当x-〉0时1/(e^x)有没有极限?
1.lim [e^(sin3x)-1]/[In(1+2x)]
x->0
感谢土桥居士的回答,基础教程上第一题的答案是3/2
第二题是选择题答案是极限不存在。
第一题有别的解释么?

当X趋于0时,e^(sin3x)的极限为1,所以Lim e^(sin3x) - 1=0
x->0
以下的同理就可以求出.
当x-〉0时1/(e^x)有没有极限?
因为e^x在X趋于零的时候为1,他不为零,所以他有极限,极限为一.
同样lim [e^(sin3x)-1]/[In(1+2x)]
=lim(1-1)/ln1
因为ln1为0,分母为0,故他不存在极限!!

第一个题0/0型用洛必达法则分子求导=3cos3x*e^(sin3x)分母求导=2/(1+2x)lim{[3cos3x*e^(sin3x)]/[2/(1+2x)],{x->0}}=lim{[3(1+2x)cos3x*e^(sin3x)]/2,{x->0}}=3/2当x-〉0时1/(e^x)有没有极限?因为e^x在X趋于零的时候...