设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)等于(  ) A.27(8n-1) B.27(8n+1-1) C.27(8n+3-1) D.27(8n+4-1)

问题描述:

设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)等于(  )
A.

2
7
(8n-1)
B.
2
7
(8n+1-1)
C.
2
7
(8n+3-1)
D.
2
7
(8n+4-1)

f(n)=2+24+27+210+213+215+…+23n+10
=

2×[(23)n+4−1]
23−1

=
2
7
(8n+4−1)

故选:D.