设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)等于( ) A.27(8n-1) B.27(8n+1-1) C.27(8n+3-1) D.27(8n+4-1)
问题描述:
设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)等于( )
A.
(8n-1)2 7
B.
(8n+1-1)2 7
C.
(8n+3-1)2 7
D.
(8n+4-1) 2 7
答
f(n)=2+24+27+210+213+215+…+23n+10
=
2×[(23)n+4−1]
23−1
=
(8n+4−1).2 7
故选:D.