等比数列﹛an﹜﹙n∈N*﹚的q=﹣1/2且lim﹙a1+a3+a5+…a2n﹣1﹚=8/3,求a1
问题描述:
等比数列﹛an﹜﹙n∈N*﹚的q=﹣1/2且lim﹙a1+a3+a5+…a2n﹣1﹚=8/3,求a1
答
等比数列﹛an﹜
Q=a3/a1=q²=1/4
a1,a3,a5,……,a2n﹣1是以a1为首项,Q=1/4为公比的等比数列
∴S=a1+a3+a5,……+a2n﹣1
=a1(1-Q的n次方)/1-Q
=a1(1-1/4的n次方)/(1-1/4)
=4a1/3-4(1/4的n次方)/3
lim﹙a1+a3+a5+…a2n﹣1﹚
=lim﹙4a1/3-4(1/4的n次方)/3)
=4a1/3
=8/3
∴4a1/3=8/3即a1=2