xy'=-2√xy+y齐次方程的通解?
问题描述:
xy'=-2√xy+y齐次方程的通解?
答案:y=x(ln|x|+c)^2
答
xy'=-2√xy+y
xy'-y=-2√xy
(xy'-y)/x^2=-2√xy/x^2
(y/x)'=-2√(y/x)/x
d(y/x)/2√(y/x)=-2dx/x
两边积分得
√(y/x)=-2lnx+C
两边平方即可