已知向量a=(sinx,1),b=(cosx,-1/2),求函数f(x)=a(a-b)的最小正周期,及当0
问题描述:
已知向量a=(sinx,1),b=(cosx,-1/2),求函数f(x)=a(a-b)的最小正周期,及当0
数学人气:800 ℃时间:2020-05-09 00:56:15
优质解答
f(x)=(sinx,1)(sinx-cosx,3/2) f(x)max=5/2 , f(x)min=2-根号2/2
=(sinx)^2-sinxcosx+3/2
=(1-cos2x)/2-1/2sin2x+3/2
=-1/2(cos2x+sin2x)+2
=-根号2/2sin(2x+π/4)+2
因为 0所以 π/4
=(sinx)^2-sinxcosx+3/2
=(1-cos2x)/2-1/2sin2x+3/2
=-1/2(cos2x+sin2x)+2
=-根号2/2sin(2x+π/4)+2
因为 0所以 π/4
答
f(x)=(sinx,1)(sinx-cosx,3/2) f(x)max=5/2 , f(x)min=2-根号2/2
=(sinx)^2-sinxcosx+3/2
=(1-cos2x)/2-1/2sin2x+3/2
=-1/2(cos2x+sin2x)+2
=-根号2/2sin(2x+π/4)+2
因为 0所以 π/4