a的n-5次方×(a 的n+1次方×b的3m-2次方)的2次方+(a的n-1次方b的m-2次方)的3次方×(-b的3m+2次方)

问题描述:

a的n-5次方×(a 的n+1次方×b的3m-2次方)的2次方+(a的n-1次方b的m-2次方)的3次方×(-b的3m+2次方)

a^n-5*(a^n+1*b^3m-2)^2+(a^n-1b^m-2)^3*(-b^3m+2)=a^n-5*a^2n+2*b^6m-4+a^3n-3b^3m-6*(-b^3m+2)=a^(n-5+2n+2)*b^6m-4-a^3n-3b^3m-6*b^3m+2=a^3n-3b^6m-4-a^3n-3b^(3m-6+3m+2)=a^3n-3b^6m-4-a^3n-3b^6m-4=0