如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E…,某人在河岸PQ的A处测得∠CAQ=30°,然后沿河岸走了110米到达B处,测得∠DBQ=45°,求河流的宽度.

问题描述:

如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E…,某人在河岸PQ的A处测得∠CAQ=30°,然后沿河岸走了110米到达B处,测得∠DBQ=45°,求河流的宽度.

过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,
∵PQ∥MN,DH∥CA,
∴四边形CAHD是平行四边形.
∴AH=CD=50,∠DHQ=∠CAQ=30°.(3分)
在Rt△DBG中,
∵∠DBG=∠BDG=45°
∴BG=DG,设BG=DG=x
在Rt△DHG中,
HG=HB+BG=60+x
由DG=HGtan30°
得x=(60+x)tan30°
解得x=30+30

3

答:河流的宽度为(30+30
3
)米.(8分)