已知函数f(x)=x3+f′(2/3)x2−x,则函数f(x)的图象在(2/3,f(2/3))处的切线方程是_.
问题描述:
已知函数f(x)=x3+f′(
)x2−x,则函数f(x)的图象在(2 3
,f(2 3
))处的切线方程是______. 2 3
答
f'(x)=3x2+2f'(
)x-1则f'(2 3
)=3×(2 3
)2+2×f'(2 3
)×2 3
-12 3
∴f'(
)=-12 3
∴f(x)=x3-x2-x
则f(
)=-2 3
22 27
∴函数f(x)的图象在(
,f(2 3
))处的切线方程是y+2 3
=-(x-22 27
)2 3
即27x+27y+4=0
故答案为27x+27y+4=0.