已知x+y=10.xy=24.求x^3+y^3,x^4+y^4

问题描述:

已知x+y=10.xy=24.求x^3+y^3,x^4+y^4

∵x+y=10, ∴(x+y)^2=100
∴x^2+2xy+y^2=100
∴x^2+y^2=100-2xy=100-2*24=52
∴x^3+y^3=(x+y)(x^2-xy+y^2)=10*(52-24)=280
x^4+y^4=(x^2+y^2)-2x^2*y^2=52^2-2*24^2=1552
望采纳!有问题请追问!x-y的绝对值?答出来我再加5分。∵(x-y)^2=x^2+y^2-2xy=52-2*24=4∴|x-y|=2