如果n阶矩阵A满足A2=A,则称A是幂等矩阵.试证幂等矩阵的特征值只能是0或1.
问题描述:
如果n阶矩阵A满足A2=A,则称A是幂等矩阵.试证幂等矩阵的特征值只能是0或1.
答
设λ是A的特征值,所以Aα=λα.α≠0是对应的特征向量.
上式两边左乘上A,得到;(A^2)α=Aλα=λAα=(λ^2)α
因为A^2=A,所以(A^2)α=Aα
所以(λ^2)α=λα
[(λ^2)-λ]α=0
因为α≠0,所以(λ^2)-λ=0,解得λ=0或1.