已知:a+b=1/2,ab=3/8,解a^3b+2a^2b^2+ab^3的值.
问题描述:
已知:a+b=1/2,ab=3/8,解a^3b+2a^2b^2+ab^3的值.
答
a^3b+2a^2b^2+ab^3
=ab(b^2+2ab+b^2)
=ab(a+b)^2
=3/8*(1/2)^2
=3/32
这是一个简单的因式分解
答
a^3b+2a^2b^2+ab^3
=ab(a^2+2ab+b^2)
=ab(a+b)^2
=3/8*(1/2)^2
=3/8*1/4
=3/32
答
a^3b+2a^2b^2+ab^3
=ab(b^2+2ab+b^2)
=ab(a+b)^2
=3/8*(1/2)^2
=3/32
1楼的是对的
答
a^3b+2a^2b^2+ab^3
=ab(a^2+2ab+b^2)
=ab(a+b)^2
=3/8 * (1/2)^2
=3/32