因式分解:(1)x^3-4x;(2)(a^2+1)^2-4a^2;(3)2(1-x)^2+6a(x-1)^2;(4)x^4-a^4;(5)(x^2-1)^2+6(x^2-1)+9;(6)m^2-12m+36.

问题描述:

因式分解:(1)x^3-4x;(2)(a^2+1)^2-4a^2;(3)2(1-x)^2+6a(x-1)^2;
(4)x^4-a^4;
(5)(x^2-1)^2+6(x^2-1)+9;
(6)m^2-12m+36.

(4)x^4-a^4=(x^2+a^2)(x^2-a^2)=(x^2+a^2)(x+a)(x-a)
(5)(x^2-1)^2+6(x^2-1)+9=(x^2-1)^2+2×3(x^2-1)+3^2
=(x^2-1+3)^2=(x^2+2)^2
(6)m^2-12m+36=m^2-2×6m+6^2=(m-6)^2

(1)x^3-4x=x﹙x-2﹚﹙x+2﹚;
(2)(a^2+1)^2-4a^2=﹙a-1﹚²﹙a+1﹚²;
(3)2(1-x)^2+6a(x-1)^2=2﹙1+3a﹚﹙x-1﹚²;
(4)x^4-a^4=﹙x-a﹚﹙x+a﹚﹙x²+a²﹚;
(5)(x^2-1)^2+6(x^2-1)+9=﹙x²+2﹚²;
(6)m^2-12m+36=﹙m-6﹚².

:(1)x^3-4x
=x(x²-4)=x(x+2)(x-2)
(2)(a^2+1)^2-4a^2
=a^4+2a²+1-4a²
=a^4-2a²+1
=(a²-1)²
=(a+1)²(a-1)²
(3)2(1-x)^2+6a(x-1)^2;
=(x-1)^2(2+6a)
(4)x^4-a^4;
=(x²+a²)(x²-a²)
=(x²+a²)(x+a)(x-a)
(5)(x^2-1)^2+6(x^2-1)+9;
=(x²-1+3)²
=(x²+2)²
(6)m^2-12m+36.
=(m-6)²