y=arcsin(x/2),y的导数是?
问题描述:
y=arcsin(x/2),y的导数是?
答
这是复合函数,y=arcsinu,u=x/2.由“复合函数求导法则”可得y'=[1/√(1-u²)]×(1/2)=(1/2)×1/√[1-(x/2)²]=1/√(4-x²).
y=arcsin(x/2),y的导数是?
这是复合函数,y=arcsinu,u=x/2.由“复合函数求导法则”可得y'=[1/√(1-u²)]×(1/2)=(1/2)×1/√[1-(x/2)²]=1/√(4-x²).