如图所示是某城市部分街道,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,甲,乙两人同时从B站乘车到F站,甲乘1路车

问题描述:

如图所示是某城市部分街道,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,甲,乙两人同时从B站乘车到F站,甲乘1路车
谁先到达?说明理由

可以同时到达.理由如下:
连接BE交AD于G,
∵BA∥DE,AE∥DB,
∴四边形ABDE为平行四边形,
∴AB=DE,AE=BD,BG=GE,
∵AF∥BC,G是BE的中点
∴F是CE的中点(过三角形一边的中点平行于另一边的直线必平分第三边),
即EF=FC,
∵EC⊥BC,AF∥BC,
∴AF⊥CE,
即AF垂直平分CE,
∴DE=DC,即AB=DC,
∴AB+AE+EF=DC+BD+CF,
∴二人同时到达F站.