已知函数f(x)=3x-alnx(a属于R) 讨论函数f(x)的单调区间和极值点
问题描述:
已知函数f(x)=3x-alnx(a属于R) 讨论函数f(x)的单调区间和极值点
若函数f(x)有极值点x0,记过点A(x0,f(x0))与原点的直线斜率为k.是否存在a使k=3-a?若存在,求出a值;若不存在,请说明理由.
答
f(x)=3x-alnx f'(x)=3-a/x
极值点x0处f'(x)=3-a/x0=0 所以 a=3x0
k=f(x0)/x0=(3x0-alnx0)/x0=(3x0-3x0lnx0)/x0=3-3lnx0
若 k=3-a 则 3-3lnx0=3-3x0
lnx0=x0
g(x)=x-lnx g'(x)=1-1/x
在00 g(x)在x>1为单增函数,而g(1)=0 所以x>1时 g(x)>g(1)=1>0
所以不存在x使g(x)=0 所以不存在a使k=3-a