解方程1+sinx+cosx+sin2x+(sinx)^2-(cosx)^2=0

问题描述:

解方程1+sinx+cosx+sin2x+(sinx)^2-(cosx)^2=0

令a=sinx,b=cosx,有a^2+b^2=1方程化为:1+a+b+2ab+b^2-a^2=0上两式相加得:2b^2+a+b+2ab=0即2b(b+a)+(a+b)=0(a+b)(2b+1)=0得:a+b=0或2b+1=0即sinx+cosx=0或2cosx+1=0前者得:tanx=-1,即x=kπ-π/4后者得:cosx=-1/2...