分解因式(x^2+2y+1)^2+10y+5+5x^2和(x^2+1)(x^2-xy+y^2)+2x^3y+2xy

问题描述:

分解因式(x^2+2y+1)^2+10y+5+5x^2和(x^2+1)(x^2-xy+y^2)+2x^3y+2xy

(x^2+2y+1)^2+10y+5+5x^2
=(x^2+2y+1)^2+(5x^2+10y+5)
=(x^2+2y+1)^2+5(x^2+2y+1)
=(x^2+2y+1)(x^2+2y+1+5)
=(x^2+2y+1)(x^2+2y+6)
第二个不会

(x^2+2y+1)^2+10y+5+5x^2
=(x^2+2y+1)^2+5(x^2+2y+1)
=(x^2+2y+1)(x^2+2y+1+5)
=(x^2+2y+1)(x^2+2y+6)
(x^2+1)(x^2-xy+y^2)+2x^3y+2xy
=(x^2+1)(x^2-xy+y^2)+2xy(x^2+1)
=(x^2+1)(x^2-xy+y^2+2xy)
=(x^2+1)(x^2+xy+y^2)