f(x)=根号2 cos二分之x减去(a-1)sin二分之x为偶函数求a 帮正周期
问题描述:
f(x)=根号2 cos二分之x减去(a-1)sin二分之x为偶函数
求a 帮正周期
答
f(x)=(√2) cos(x/2)-(a-1)sin(x/2)为偶函数求a 和最小正周期
f(x)=(√2){cos(x/2)-[(a-1)/√2]sin(x/2)]
∵f(x)是偶函数,∴必有(a-1)/√2=0,即有a=1,此时Tmin=2π/(1/2)=4π.
答
f(x)=√2cos(x/2)-(a-1)sin(x/2)
f(-x)=√2cos(x/2)+(a-1)sin(x/2)
f(x)=f(-x)
a-1=0
a=1
f(x)=√2cos(x/2)
T=2π/ω=2π/(1/2)=4π