设a>0,函数f(x)=ax+b/x2+1,b为常数. (1)证明:函数f(x)的极大值点和极小值点各有一个; (2)若函数f(x)的极大值为1,极小值为-1,试求a的值.

问题描述:

设a>0,函数f(x)=

ax+b
x2+1
,b为常数.
(1)证明:函数f(x)的极大值点和极小值点各有一个;
(2)若函数f(x)的极大值为1,极小值为-1,试求a的值.

(1)证明f′(x)=-ax2-2bx+a(x2+1)2,令f′(x)=0,得ax2+2bx-a=0(*)∵△=4b2+4a2>0,∴方程(*)有两个不相等的实根,记为x1,x2(x1<x2),则f′(x)=-a(x-x1)(x-x2) (x2+1)2,当x变化时,f′...