证明 4k-1型 素数有无穷多个
问题描述:
证明 4k-1型 素数有无穷多个
我在学习和研究群论的数学思想,研读张广祥的书,这个习题我做不出来
我相信数学研究的本质,与别的学问无异.问题的解决的要点,在于我们认识和理解已有的简单的,近似的问题的深度.事实上,要有非常多的实例,阐明一个抽象概念的本质的特征,规律.数学家们需要细致的研究每一个侧面,才能深刻的把握一个概念,思想和方法.
我不是职业数学家,缺乏这种环境和精力.但我天生能对数学有非常深刻的理解和激情.例如群,这样的概念,思想,实在是令人震悍
心随人飞先生的回答没有直接合题,我要的是4k-1,不是4k+1.例如,7就不是4K+1型.我数论的知识很有限,
答
证:反证法假设4k-1型的素数有有限个,无妨为n个设为p1,p2,……pn令A=(p1*p2*……pn)^2+2由于(p1*p2*……pn)^2模4余1故A模4余3I若A为素数,则A为4k-1型的素数,且不在那n个素数中矛盾II若A为合数显然A的质因子中必然有...