问一道数学题 诚心求助 高一学生问
问题描述:
问一道数学题 诚心求助 高一学生问
已知f(x)=2x- 2/x^2 + a/x,其中a∈(0,4],求所有的实数K,使对x1,x2∈R+,恒有 |f(x1)-f(x2)|>K|x1-x2|..求教.
高一没学导数 虽然老师说过点导数的基本运算法则 但我一点也听不懂 也用不来 关于2L的 我想你用x1=x2 来说明K为空集. 呃 算了 我也没法了 只有这样了 题目还是应该说一下x1≠x2的 - -!
答
呃……
该问题是平凡的.
令x1=x2∈R+,由于恒有 |f(x1)-f(x2)|>K|x1-x2|,即 0 > 0
由此,{满足条件的实数K}=空集.