因式分解法解下列方程 1、用因式分解法解下列方程:(1)3y^2-5y=0 (2)4x^2=12x (3)x^2+9=-6x (4)9x^2=(x-x^3-3x^2-13x+15 =x^3-3x^2+2x-15x+15 =x(x^2-3x+2)-15(x-1) =x(x-2)(x-1)-15(x-1) =(x-1)[x(x-2)-15] =(x-1)[x^2-2x-15] =(x-1)(x-5)(x+3) 这样的

问题描述:

因式分解法解下列方程 1、用因式分解法解下列方程:(1)3y^2-5y=0 (2)4x^2=12x (3)x^2+9=-6x (4)9x^2=(x-
x^3-3x^2-13x+15
=x^3-3x^2+2x-15x+15
=x(x^2-3x+2)-15(x-1)
=x(x-2)(x-1)-15(x-1)
=(x-1)[x(x-2)-15]
=(x-1)[x^2-2x-15]
=(x-1)(x-5)(x+3) 这样的

1.
y(3y-5)=0
y=0或y=5/3
2.
x^2-3x=0
x(x-3)=0
x=3或x=0
3.
x^2+6x+9=0
(x+3)^2=0
x= -3
4.题不全


1、y(3y-5)=0
y=0, y=5/3
2、4x^2-12x=0
4x(x-3)=0
x=0, x=3
3、x^2+9=-6x
x^2+6x+9=0
(x+3)^2=0
x+3=0
x=-3

(1)3y^2-5y=0
3y^2-5y=y(3y-5)=0,则y=0或y=5/3
(2)4x^2=12x
变形为4x^2-12x =0即4x(x-3)=0则x=0或x=3
(3)x^2+9=-6x
变形为x^2+6x+9=0即(x+3)²=0则x=-3
4题不全