圆(x-1)^2+(y-1)^2=9,过A(2,3)作圆的任意弦,求这些弦的中点P的轨迹方程

问题描述:

圆(x-1)^2+(y-1)^2=9,过A(2,3)作圆的任意弦,求这些弦的中点P的轨迹方程
可以没图,

圆C:(x-1)^2+(y-1)^2=9,过A(2,3)作圆的任意弦DE,A(2,3)在园C内 C(1,1) DE中点P(x,y) CP⊥DE k(CP)=(y-1)/(x-1) k(DE)=(y-3)/(x-2) k(CP)*k(AB)=-1 [(y-1)/(x-1)]*[(y-3)/(x-2)]=-1 弦的中点P的轨迹方程是园:(x-1.5)^...