已知抛物线关于x轴对称,顶点在坐标原点O,并且经过点M(2,y),若点M到抛物线焦点的距离为3,则|OM|=_.
问题描述:
已知抛物线关于x轴对称,顶点在坐标原点O,并且经过点M(2,y),若点M到抛物线焦点的距离为3,则|OM|=______.
答
∵抛物线经过点M(2,y),
∴抛物线的开口向右.
设抛物线的方程为y2=2px(p>0),
∵点M(2,y)到抛物线焦点F的距离为3,
∴根据抛物线的定义,得|MF|=2+
=3,p 2
解得p=2,
由此可得抛物线的方程为y2=4x.
将点M坐标代入抛物线方程,得y2=4×2=8,
解得y=±2
,M坐标为(2,±2
2
).
2
∴|OM|=
=2
22+(±2
)
2
.
3
故答案为:2
3