如图,南北向MN为边界线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私艇A发现正东方向

问题描述:

如图,南北向MN为边界线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私艇A发现正东方向
我国反走私艇A发现正东方向与一走私艇C以每小时13海里的速度偷偷向我领海开来,便立即通知在MN线上的巡逻的我国反走私艇B,已知AC两艇的距离13海里,AB两艇的距离是5海里,测得反走私艇B与C的距离是12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?

∵南北方向MN,A艇发现正东方向有一走私艇C
∴AC⊥MN于E
有∵AB=5,BC=12,AC=13;(5^2+12^2=13^2勾股定理)
∴三角形ABC为直角三角形
∴12*5/2=13*BE/2=60/13(直角三角形ABC的面积)
∴BE=60/13
在Rt△ BEC中
CE^2+BE^2=BC^2
∴CE=√[12^2-(60/13)^2]
∴走私艇C的速度13海里/时不变到E处需时间为:
√[12^2-(60/13)^2]/13≈0.852(时)=51分7秒
9:50+0:51:7=10:41:7
∴若走私艇C的速度不变最早会在当日上午10时41分7秒进入我国领海.