已知函数f(x)=sinx+acosx的图像经过点(-π,0)

问题描述:

已知函数f(x)=sinx+acosx的图像经过点(-π,0)
1 .求实数a的值
2 .设g(x)=[f(x)]²-2,求图像g(x)的最小正周期与单调递增区间

答:
f(x)=sinx+acosx经过点(-π/3,0)
代入得:
f(-π/3)=sin(-π/3)+acos(-π/3)=0
所以:-√3/2+a/2=0
解得:a=√3
f(x)=sinx+√3cosx
=2*[(1/2)sinx+(√3/2)cosx]
=2sin(x+π/3)
g(x)=f²(x)-2
=4sin²(x+π/3)-2
=2*[1-cos(2x+2π/3)]-2
=-2cos(2x+2π/3)
g(x)最小正周期T=2π/2=π
单调递增区间满足:
2kπ