已知x满足不等式-3≤log1/2x≤-1/2,求函数f(x)=log2x/4·log2x/2的值域
问题描述:
已知x满足不等式-3≤log1/2x≤-1/2,求函数f(x)=log2x/4·log2x/2的值域
答
x满足不等式-3≤log1/2x≤-1/2
x满足不等式1/2≤log(2)x≤3
log2x/4·log2x/2=[log(2)x-2]*[log(2)x-1]=[log(2)x-1.5]²-0.25
函数f(x)=log2x/4·log2x/2的值域[-0.25,2】
答
解由-3≤log1/2x≤-1/2,得-3≤-log2x≤-1/2,即1/2≤log2x≤3令t=log2(x),则t属于[1/2,3]故f(x)=log2x/4·log2x/2=(log2(x)+log2(1/4))(log2(x)+log2(1/2))=(log2(x)+(-2))(log2(x)+(-1))故原函数变为y=(t-2)...