已知函数f(x)=2mx-m^2+1/(x^2+1) 求当m>0时,函数f(x)的单调区间与极值
问题描述:
已知函数f(x)=2mx-m^2+1/(x^2+1) 求当m>0时,函数f(x)的单调区间与极值
答
f'(x)=[2m(x^2+1)-2x(2mx-m^2+1)]/(x^2+1)^2
=-2[mx^2-(m^2-1)x-m]/(x^2+1)^2
=-2m(x-m)(x+1/m)/(x^2+1)^2,
m>0,
∴-1/m