已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,E,F分别是垂足,求证:AE=AF.

问题描述:

已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,E,F分别是垂足,求证:AE=AF.

证明:∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵D是BC的中点,
∴BD=CD,
∴△BDE≌△CDF,
∴BE=CF,
∵AB=AC,
∴AB-BE=AC-CF,
即AE=AF.