已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右顶点分别是A1,A2,MA2的斜率之积等于2.

问题描述:

已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右顶点分别是A1,A2,MA2的斜率之积等于2.
已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右顶点分别是A1,A2,M是双曲线上任意一点,若直线MA1.MA2的斜率之积等于2,求离心率.

答:
双曲线x²/a²-y²/b²=1
顶点A1(-a,0),A2(a,0)
点M(x,y)满足:kma1×kma2=2
所以:
[ y/(x+a) ]×[ y/(x-a)]=2
所以:y²=2(x²-a²)
与双曲线联立得:
x²/a²-2(x²-a²)/b²=1
整理得:
(b²-2a²)x²/(ab)²=(b²-2a²)/b²
因为点M是任意点
则有:b²-2a²=0
所以:c²=a²+b²=3a²
解得:e=c/a=√3
离心率e=√3