已知函数f(x)=x3-3ax-1,a≠0 (1)求f(x)的单调区间; (2)若y=f(x)在x=1在处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
问题描述:
已知函数f(x)=x3-3ax-1,a≠0
(1)求f(x)的单调区间;
(2)若y=f(x)在x=1在处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
答
【答案】(1)由题知:f'(x)=3x2-3a=3(x2-a),
①当a<0时,对∀x∈R,恒有f'(x)>0,
即当a<0时,f(x)的单调递增区间为(-∞,+∞).
②当a>0时,
解f'(x)>0得,x>
或x<−
a
,
a
解f'(x)<0得,−
<x<
a
,
a
即当a>0时,f(x)的单调递减区间为(−
,
a
),
a
f(x)的单调递增区间为(-∞,−
)和(
a
,+∞).
a
(2)∵y=f(x)在 x=1处取得极值,
∴f'(1)=3-3a=0,
则a=1.
即f(x))=x3-3x-1,f'(x)=3x2-3;
解f'(x)=0得,x=±1.
由(1)知:f(x)在x=-1处取得极大值f(-1)=1;在x=1处取得极小值f(1)=-3
∵直线y=m与y=f(x)函数的图象有三个不同的交点,
结合f(x)的单调性可得,-3<m<1.
所以m的范围为(-3,1).