1 2 3 4四个数,用限加减乘除(可以用括号)组成1 2 3 4 ...

问题描述:

1 2 3 4四个数,用限加减乘除(可以用括号)组成1 2 3 4 ...
如2-4+3*1=1 2-4+3+1=2
最大可以组到几(从1到这个数必须是连着的)?
不限用加减乘除呢?
不限用加减乘除就是多了一个乘方

限加减乘除:
(2+3-4)*1=1
4+2-3-1=2
(4-2-1)*3=3
4+3-2-1=4
(4+3-2)*1=5
4+3-2+1=6
(4+3)*(2-1)=7
4+3+2-1=8
(4+3+2)*1=9
4+3+2+1=10
4+3*2+1=11
4*2+3+1=12
4*3+2-1=13
(4*3+2)*1=14
4*3+2+1=15
4*(3+2-1)=16
(4+2)*3-1=17
(4+2)*3*1=18
4*(3+2)-1=19
4*(3+2)*1=20
4*(3+2)+1=21
(4*3-1)*2=22
4*3*2-1=23
4*3*2*1=24
4*3*2+1=25
(4*3+1)*2=26
(4*2+1)*3=27
4*(3*2+1)=28
最大为28,以下说明29不可取到:
取到29的最后一步如果是乘,那么由于29是质数,最后一步必是乘上1,而2、3、4所能组成的最大数是24(=2*3*4),故不可行;如果是除,由于1、2、3、4四个数中任三个组成的数不大于24,故不可行;如果是加,由于1、2、3、4四个数中任三个组成的数不大于24,再加上剩余一数,也必小于29(>24+4),故不可行;如果是减,类似加(29>24-1),更是不可行.
附:1、2、3、4在四则运算下,所能组成的最大数是36(=4*3*(2+1))(不考虑极限,如:(4+1)/(3+2)).
在不限加减乘除时很难说,对数、幂次、阶乘等等(积分、导数什么的没多大用就不说了),还有各种其他各式算符等等.不好说.