已知f(x)是定义在(0,+∞)上的增函数,当n∈N*时,有f(n)∈N*,f[f(n)]=3n,则f(1)+f(2)=_.

问题描述:

已知f(x)是定义在(0,+∞)上的增函数,当n∈N*时,有f(n)∈N*,f[f(n)]=3n,则f(1)+f(2)=______.

若f(1)=1,则f(f(1))=f(1)=1,与条件f(f(n))=3n矛盾,故不成立;若f(1)=3,则f(f(1))=f(3)=3,进而f(f(3))=f(3)=9,与前式矛盾,故不成立;若f(1)=n(n>3),则f(f(1))=f(n)=3,...