F(x)=∫(x^3-t^3)f```(t)dt如何求导 ∫上限是x 下限是0
问题描述:
F(x)=∫(x^3-t^3)f```(t)dt如何求导 ∫上限是x 下限是0
答
先把F(x)拆开,
F(x)=∫[0,x] (x^3-t^3)f '''(t)dt
=x^3 ∫[0,x] f '''(t)dt - ∫[0,x] t^3*f '''(t)dt
对于积分上限函数,其导数就等于将其上限代入被积函数即可,
所以 ∫[0,x] f '''(t)dt的导数为 f '''(x),∫[0,x] t^3*f '''(t)dt的导数为x^3*f '''(x),
于是
F'(x)=3x^2 ∫[0,x] f '''(t)dt + x^3*f '''(x) - x^3*f '''(x)
=3x^2 * [f ''(x)-f ''(0)] + x^3*f '''(x) - x^3*f '''(x)