观察以下等式: (x+1)(x2-x+1)=x3+1 (x+3)(x2-3x+9)=x3+27 (x+6)(x2-6x+36)=x3+216 … (1)按以上等式的规律,填空:(a+b)(_)=a3+b3 (2)利用多项式的乘法法则,证明(
问题描述:
观察以下等式:
(x+1)(x2-x+1)=x3+1
(x+3)(x2-3x+9)=x3+27
(x+6)(x2-6x+36)=x3+216
…
(1)按以上等式的规律,填空:(a+b)(______)=a3+b3
(2)利用多项式的乘法法则,证明(1)中的等式成立.
(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
答
(1)(a+b)(a2-ab+b2)=a3+b3;
(2)(a+b)(a2-ab+b2)
=a3-a2b+ab2+a2b-ab2+b3
=a3+b3;
(3)(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
=x3+y3-(x3-y3)
=2y3.